Denis Noble, fiziolog Tudi znanost ima svojo modo in prevladujočo ideologijo

Po dnevni sobi se nežno širijo zvoki Schubertove nedokončane simfonije. Na fotelju sedi poslušalec in joče. Pri tem ga pozorno opazuje skupina znanstvenikov s tujega planeta, ki poskuša ugotoviti, kaj je sprožilo tak odziv.

Lenart J. Kučić, foto Jure Eržen

Vprostoru ni niicesar drugega
kot zvok, ki prihaja iz zvočKot zvok, ki prihajai iizzooc-
nikov, Ti so prikjǔucni na
predvaialnik, v katerem predvajalnik, v katerem
se vrti srebrna plošča,
popisana z drobnimi vdolbinicami. Tuii znanstveniki po temejitem premisleku skkenejo, da je
odgovo verjetno na ploš̌i, ki hrani zapis
za skrivnostne zvoke. Zato se lotijo analiza skrivnostne evvoke. Zato se lotijio anali-
ze volobinic in prebiranja zapisa, upajoc,
da poslušalcu vzbudijo jok, veselie in druga custrena stanja.
Ti znanstveni
ni iclovenseskim molekiokularnim biolologom, kiso v drugi polovici dvajsetega stoletia odkrili genetski zapis, je povedal britanski fiziolog
David Noble. V jedru celice so nasi David Noble.
kšno srebrno plošicico - viiačnico DNK kateri so bili zapisane formule za belijakovi-
ne, ki sestavljajo
zive organizme. Zdelo se ne, ki sestavlijajo zive organizme. Zdelo se poverani s skrivnostio žvivjijnja: lastnosti organizmov, mehanizmi njihovega delova-
naj, navodila aza sestavo novih živi hoblik in
 tako preprosto, je dejal Noble. Kaj v resnici
pomeni zapis na glabeni plosci naredi brez ustreznega predvajalnika? Kaj je povzročilo solze -skladatelj, , ki je napisal
simfonij,
olashenik, odigra, spomin, kigaje obucila skaaba? Ali
pa je jok sprozilo točno določeno zaporedje tonov na plosči, ki ga lahko poimenujemo kar solzno zaporedje?
 kdo verjel v odkritije solznega zaporedja, se je namuznil Noble. Se evedno pa ne manj-
ka znanstvenikov, ki so prepricani, da taka
solza zapo solzna zaporedja obstajajo v genomu. To
prepricanje pa ne ovira e za prihodnji razvoj biologie, , ki mora preseči preprostost gen-
skega determinizma, če žli kdaj doumeti skega determinizma, č̌ ž žli ikdaj doumeti
kompleksnost delovanja žvivh organizmov.
Metafore, po katerih je nasé iviljenje le del

 n individualizem naravno stanje stvari, opozoril sogovornik.
V sestdeseth letih prejsnjega stoletja ste
bill eden prvih znanstvenikov, ki je v bio-
log

 tualino srce. V zadnjem desetletju pa ste se
popolnoma odmaknili od pootitivisticinega
znanstvenega pristopa s.

 $\underset{\substack{\text { mine } \\ \text { Spen } \\ \text { se }}}{ }$

 mes Tatson in in ranciek is riarne staiologije. Ja-
model DNK.
mavila model DNK. Francois Jacob, Jacques Monod
in André Lwoff so odkrili mehanizme, ki so
reguli In Andre Lworf soodrkili menanizme, ki so
regulirali delovanje genoma in ravvili idejo
genetskega programirania. TTo je bila vpliv-
na hipoteza, ki e e trdila da genetskega programirana. To je bila vpliv-
na hipoteza, ki je trdiala, da je enenski zapis
podoben luknijcastemu traku, skaterimi so programirali tedanje racuualnike in nanje
shranjevali podatk.
Organizem so videl Organizem so videli ikot računalnik, ki iz-
vršuje e rograme, zapisane v genomu? Da. Jakove e bil pperepricinen, da ja e. egnski za,
pis tak program, ki upravija celico in naro pis tak program, , ki upravila celico in naroča
zivemuorganizmu, kaj naj poćne. Ta ideja je
do danes ohranila astevil
 zvezo ged genomom in incoloovanasem orično-
nizma. Vendar ni tako preprosto. Vzemimo, da ima organizem dvesto vostt celic. Kako K je
to mogocec, \mathbf{c} e ima vsaka izmed teh cal to mogoče, če ima vsaka izmed teh celic po-
polnoma enar genetski zapis? Kako solahko
 pa se preko koncicicev razpredajo v mrez̃o
-zivene celice? Kaj vpliva na to, kateri del Zzivčne celice? Kaj vpliva na to, kateri de
genskega zapisa
posamearablijn prizasnovi

 kako poenostavljena je bilia ta razlaga.
Kdaj ste podvomilio tedaji
molekularne biologifo molekularne biologije o vsemogočnosti molekular
genov?
Pri mod
 dajv genskem zapisu ni prava nobenenin havo-
 ni velovanje organizma ocitno niso shranje
se je hitro začela majajil mat celo prva dvom, pa
hipotera se je hitro začela majati celotna hipoteza
vsemogočnosti genov, saj sem začel opazà

Prenosa pridobljenih lastrosti na po
tomce, ki iniso zapisane y gen Uh, tako razmislsianje je velijalo za najhušo herezijo! Še danes boste hitro obtōen
lamarkizma, če boste trdili, da se lahko lamarkizma, če boste trdiili, da se lahko ne
katere lastnosti prenasajo tudi na druge načene, ne preko penoma francoski biolog
iz prve polovice iz prve polovice 19. stoletetja Jean- $\begin{aligned} & \text { Baptiste } \\ & \text { Lamarck je bil prepričan, da je mogoče }\end{aligned}$ Lamarck je bil prepričan, da je mogoce pozneje domnevno ovrgla evoluciiska teori-
ja Charlesa Darwinal. In vendar epigeneske ja Charlesa Darwinal. In vendar epigenetske
raziskave kažejo, da lahko na izrazanje raziskave kažjo, da lahko na izrazãne
genov vplivajo tudi dejavniki okolja, kar pomeni, da se lahko določene spremembe
dedujejo tudi brez sprememb vNK, kar se

počasi pri pristope.
Razocaranje nad obljubami, da bo mo. goče s sestavilianjem genskih zaporedij i delovati zdravilia, , zzgajati rastline, patent
rati nove organizme... rati nove organizme ...?
Projekt človeskega ge Projekt cloveskega genoma je prodajal
prav njegov domnevno neskoncen komer
cialni potencial Ideja cialni potencial. Ideja, da je mogogoče odkriti
\qquad
k

ne glede na napredek račualnisistva. Kaj
ele da bi lahko razumeli boli komplekssa Sele di bi la hko razumeli bolj kompleksna
pravila, po katerih se povezujejej beljakovi-
 seh možnih interakci, da je sestavila dana-
sjij delujuoče organizme, temveč je verietno
 uporabnih interakcij. Zato sie evolucijio pred-
tavliam kot proces, v katerem je narava stavlijam kot proces, v katerem je narava z
nenehnim eksperimentiranemo dkrivala
en mali trik za drugim. Te drobne učinkonenehnim eksperimentiranjem odkrivala
en mali trik za drugim. $\begin{aligned} & \text { drobone uuinko } \\ & \text { vite rejitve - kombinacije beljakovin }- \text { pa }\end{aligned}$ sisteme. Pričemer ni razmislijala o četrlietnih na
ložbenih cikilih in strategijah vlaganja v ra$\underset{ }{\text { zvoj ... }}$ Evolucija dojema čas precej drugace kot
podjetia in znanstvene komisije (smeh) ato res težko razumem napovedi, da nar bo z nasim omejenim znanjem uspelo v
tako kratkem casu razvitistvari, za katere ee narava porabila na milijijne let poskusov
in napak. Očitno situdi stevilini znanstveni
 sistemi so v ressicic živi organizmi. Mole-
kularna biologija anam jesicer pomagala
.

dvajsetega stoletja. Vendar sọti geni in beljakovine le sestavine, ki se lahko povezujejo na zelo različne načine, ki znajo prevzeti zelo različne vloge in opravljati različne fiziološke funkcije. O višjih ravneh delovanja sistemov pa nam molekularna biologija ne pove praktično ničesar.

Zakaj sistemska biologija še vedno velja za alternativno znanost, če so zadrege molekularne biologije in genetskega determinizma tako očitne, kot pravite?

Razlogov je več. Prepričanje, da lahko že z odkrivanjem genetskih zaporedij vzgajamo superrastline in zdravimo bolezni, je preveč vabljiva in tudi tržno zanimiva, da bi jo znanstvena skupnost upala preveč odločno zavrniti. Poleg tega pa je genetski determinizem in idejo sebičnega gena mogoče uporabiti tudi kot opravičilo za določen družbeni red ali celo dokaz, da je neko stanje v družbi »naravno«. Sebični gen je zelo nevarna metafora.

Ker gene poosebi kot sebične posameznike?

Seveda. Genov ne moremo vzeti iz konteksta njihovega biološkega delovanja in jim pripisati človeških lastnosti: sebičnosti, sodelovalnosti, boja za prevlado ... Vendar je imela ideja sebičnega gena, ki jo je v sedemdesetih letih utemeljil britanski evolucijski biolog Richard Dawkins v svoji istoimenski knjižni uspešnici, kljub vsem filozofskim pomislekom v tistem času zelo velik vpliv, saj se je zelo dobro ujela s političnimi razmerami v svetu - političnim konservativizmom in novoklasično liberalno ekonomsko teorijo. Filozofinja Mary Midgley, ena najodločnejših kritičark ideje sebičnega gena, je opozorila, da si je genetski determinizem izposodil idejo skrajnega individualizma pri angleškem filozofu Thomasu Hobbesu in jo združil z Darwinovo evolucijsko teorijo, po kateri naj bi preživeli najmočnejši posamezniki. Nekateri molekularni in evolucijski biologi so zato zelo suvereno trdili, da družba in posamezniki ne obstajajo, le boj med sebičnimi geni za prevlado v biološki juhi življenja. Metaforo so vzeli preveč dobesedno.
Socialni darvinizem?
... ki temelji na popolnem nepoznavanju družbe, pa tudi same evolucijske teorije. Darwin je veliko pisal o čustvih in inteligenci pri ljudeh in živalih, ki jih ni neposredno pripisoval vplivu genov. V nastanku vrst je vsaj dvajsetkrat omenil procese, ki jih je mogoče opisati kot lamarkistične. Evolucija zanj niti približno ni bila tako preprosta ali celo deterministična, kot jo danes razlagajo nekateri novodarvinisti, ki jih nato radi povzemajo ekonomisti in politiki. V evoluciji ni videl samo boja za preživetje, ampak tudi veliko sodelovanja, saj se je zavedal soodvisnosti vrst v ekosistemih. Sploh pa pozabljamo, da je Darwin izhajal iz drugačne filozofske tradicije.

Kakšne?

Biologija je bila v drugi polovici dvajsetega stoletja zgleden primer pozitivistične znanosti in redukcionizma. Ukvarjala se je z iskanjem najmanjšega delca-podobno kot pred njo kemija in fizika - ter ga našla v genomu. V Darwinovih časih pa sta biologija in genetika v Veliki Britaniji izhajali iz drugačne znanstvene tradicije, na katero je močno vplival nizozemski filozof iz 17 . stoletja Ba ruch Spinoza, ki je leta 1662 napisal zelo pomembno pismo tedanjemu predsedniku britanske kraljeve znanstvene družbe. V tem pismu je znanstvenikom predlagal, naj si zamislijo neznansko majhnega črva, ki prebiva v naših žilah. Spinoza se je vprašal, kako si tako bitje razlaga svet, v katerem živi. Verje-
tno se zaveda krvnega pretoka, morda pozna druge male delce v krvi ... Skoraj zagotovo pa ne vidi celote gostiteljskega organizma, ne razume, kaj povzroča pretakanje krvi in kakšni procesi mu omogočajo preživetje v njegovem življenjskem okolju. Za Spinozo je bilo prav celostno razumevanje življenjskih procesov temeljna naloga znanosti. Sistemski biologi zato ne počnemo ničesar revolucionarnega - le znova si zastavljamo 350 let stara vprašanja.

Ali še starejša. Razlike med sistemskim in redukcionističnim znanstvenim pristo-
so postali budistični menihi, tantriki ali ezoteriki. Njihove zgodbe so si precej podobne. Pri svojem raziskovalnem delu so odkrili sisteme, ki jih ni bilo mogoče razložiti z nobeno tradicionalno znanstveno paradigmo, še najmanj pa z redukcionizmom, v katerem so bili vzgojeni. Kvantna fizika in relativnostna teorija ugotavljata, da noben najmanjši delček ne obstaja sam po sebi, ampak je povezan z vsemi drugimi delci v vesolju. Meje med materijo in energijo ni več mogoče jasno določiti. Ni vrha piramide niti osrednjega mesta, okoli

Denis Noble, zaslužni profesor fiziologije na Univerzi v Oxfordu in predsednik Mednarodne zveze fizioloških znanosti, velja za enega najvidnejših zagovornikov sistemske biologije razumevanja delovanja organov in organizmov kot celote. Je velik občudovalec angleśke moralne filozofinje Mary Midgley, ki že več kot tri desetletja vztrajno dokazuje zmote genskega in evolucijskega determinizma ter opozarja na njune družbene posledice. Svoje nastope rad pospremi z glasbo Glasba življenja, Biologija onkraj genoma.
pom poosebljata že Platon in Aristotel, starogrška filozofa, ki sta živela pred več kot dvema tisočletjema.

Za filozofe ta dilema res ni nova, naravoslovna znanost pa se začne teh vprašanj zavedati šele, ko trči ob skrajne meje svojega redukcionističnega pristopa. To se je zgodilo molekularni biologiji. Našla je svoj najmanjši delec - in ostala brez pričakovanih odgovorov.

Ko je kvantna fizika našla svoj najmanjši delec in ostala brez pričakovanih odgovorov, so začeli številni fiziki odkrivati vzhodno filozofijo, predvsem budizem. Bodo začeli tudi molekularni biologi razmišljati o biološki teoriji relativnosti ali se zatekati v metafiziko?
Povezovanje med zahodno znanostjo in vzhodno filozofijo se je v zadnjih desetletjih zelo okrepilo. V preteklosti sem večkrat vodil omizja na temo znanosti in budizma. Spoznal sem veliko fizikov in drugih naravoslovnih znanstvenikov, ki
katerega bi se vrtelo vesolje. Teh sistemov ni mogoče prevesti v linearne sisteme, ki so blizu zahodni kulturi - z jasnimi začetki in zaključki, umeščenimi med prej in potem ... Njihova znanstvena vzgoja jih ni pripravila na taka vprašanja, zato so se znašli v hudi raziskovalni in tudi osebni zadregi.

Iskanju smisla?
Ko trčiš v velika vprašanja, ki ti zamajejo svet, v katerega si verjel, je to zelo človeška reakcija. Budizem je zanimiv, ker se zdi, da se ukvarja z zelo podobnimi koncepti kot nova fizikalna znanost - ničem, relativnostjo, vsepovezanostjo-in ni protiznanstven. Z vprašanjem smisla se sicer ukvarjajo tudi zahodne religije, vendar so za marsikaterega znanstvenega pozitivista preveč dogmatične, saj vse neznanke pojasnjujejo z nekim svojim bogom, v katerega moraš verovati. Vendar tudi budizem ne more postati nova filozofija naravoslovne znanosti.
Zakaj?

Genov ne moremo vzeti iz konteksta njihovega biološkega delovanja in jim pripisàti človeških lastnosti: sebičnosti, sodelovalnosti, boja za prevlado ... Vendar je imela ideja sebičnega gena, ki jo je v sedemdesetih letih utemeljil britanski evolucijski biolog Richard Dawkins v svoji istoimenski knjižni uspešnici, kljub vsem filozofskim pomislekom v tistem času zelo velik vpliv, saj se je zelo dobro ujela s političnimi razmerami v svetu - političnim konservativizmom in novoklasično liberalno ekonomsko teorijo.

Če malo bolje poznate fiziko, filozofijo in budizem, potem veste, da zgodnih budistov ne moremo imeti ravno za predhodnike kvantne fizike in relativnostne teorije. Budo je zanimalo, kako se lahko človek odreši trpljenja, metafiziki pa ni bil preveč naklonjen, kar kažejo njegove zgodnje sutre. Koncepte, ki se zdijo blizu današnji znanosti, so razvili v nekaterih budističnih šolah bistveno pozneje.

Kljub temu nekatere metafore v vaši knjigi Glasba življenja izzvenijo precej vzhodnjaško - glasba igra tudi, če orkester nima dirigenta, organizmi so proces ...

Priznam, da so name precej vplivali avtorji, kot je Steven Baker, ki je napisal dve zanimivi knjigi o duhovnem prebujanju zahoda in izpovedih budističnega ateista. Tudi moje prepričanje, da bi morali na vsak organizem gledati kot na proces in ne kot na objekt, so nekateri kritiki označili za vzhodnjaškega. Morda imajo prav, vendar druge poti ne vidim. Preseganje redukcionizma in genetskega determinizma je ključno za prihodnji razvoj biologije, prav tako povezovanje z drugimi znanostmi predvsem filozofijo in humanističnimi vedami, od katerih se lahko naravoslovci ogromno naučimo. Hkrati nam lahko to povezovanje pomaga vrniti nekaj ugleda v javnosti, ki ga je naravoslovje izgubilo zaradi neuresničenih napovedi, ki so jih nespametno obljubljali pobudniki ambicioznih znanstvenih pobud, kakršna je bila projekt genom. Nismo našli zdravila proti raku, nismo razvozlali dednih bolezni, javnosti pa še vedno ne znamo povedati, zakaj nam e spodletelo in kakšne so realne omejitve našega znanja. Vse to zmanjšuje zaupanje v znanost in znanstvenike.

Znanost se v preteklosti ni prav dosti ozirala na to, kaj si o njej misli laična javnost. Bi se morala?

Pred petindvajsetimi leti sem s skupino znanstvenih kolegov ustanovil pobudo Rešimo britansko znanost, ki se je borila proti odpravi javnega financiranja raziskovalnega dela. Konservativna vlada tedanje premierke Margaret Thatcher je bila prepričana, da je javno financiranje znanosti nepotrebno. Logika je bila preprosta: če je tvoja znanost dobra, jo bo financiral trg. Znanstveniki smo seveda vedeli, da ta argument ne zdrži, saj obstaja veliko pomembnih področij znanstvenega in raziskovalnega dela, za katere ni komercialnega interesa. Svoja stališča smo morali neutrudno ponavljati pred politiki, mediji in javnostjo, ki se je na srečo postavila na našo stran, zato smo tedaj uspeli ohraniti kar nekaj raziskovalnih sredstev. Danes se nam zaradi globalne krize napovedujejo še precej hujša krčenja raziskovalnih proračunov, a se bojim, da bomo javnost tokrat bistveno teže prepričali, da delujemo v njenem interesu, ko bomo spet potrebovali njeno podporo.

Kaj se je spremenilo od časov Margaret Thatcher?

Morda je znanost v preveč tekmovala z religijami, da bi postala razlagalka Resnice z veliko začetnico, kar ni bila nikoli njena naloga. V preteklih desetletjih smo pokazali preveč arogance, od laikov pa smo zahtevali, da morajo slepo zaupati naši znanstveni vsemogočnosti, čeprav smo se v resnici tudi sami nekritično priklanjali lastnim znanstvenim dogmam. Če hočemo povrniti zapravljeno zaupanje, se bomo morali zato najprej znova naučiti zdrave ponižnosti Take, kakršno so nekoč znali občutiti naši znanstveni predhodniki, ko so prisluhnili tistemu, čemur pravim - glasba življenja.

